پیش بینی خصوصیات رئولوژیکی بنیادی خمیر با استفاده از شبکه عصبی-الگوریتم ژنتیک
نویسندگان
چکیده
سابقه و هدف: خمیر محصول میانی خطوط تولید صنایع نانوایی است که ویژگی های رئولوژیکی آن نمایانگر خصوصیات فیزیکوشیمیایی مواد اولیه و مؤثر بر ویژگی های کیفی فرآورده نهایی است. با توجه به کارایی بالای شبکه های عصبی مصنوعی در آموزش پذیری و پردازش موازی داده ها با روابط غیر خطی، هدف از این پژوهش تهیۀ مدل هایی مناسب به منظور پیش بینی خصوصیات رئولوژیکی خمیر با توجه به ویژگی های فیزیکوشیمیایی آرد است. مواد و روشها: طیف وسیعی از آردهای تهیه شده در کارخانه های مختلف کشور جمع آوری و هفت ویژگی فیزیکوشیمیایی آنها مورد ارزیابی قرار گرفت. آزمون های نوسانی روبش کرنش و روبش فرکانس بر خمیر حاصل از نمونه ها انجام و دو پارامتر مهم حاصل از آنها به منظور مدل سازی انتخاب شدند. پس از آموزش شبکه ها و تعیین پارامترهای آنها با استفاده از الگوریتم بهینه ساز ژنتیک و آزمودن هر شبکه، بررسی حساسیت پارامترهای خروجی به فاکتورهای ورودی شبکه صورت گرفت. یافتهها: شبکه های طراحی شده از انواع پرسپترون چهار لایه ای هستند که اولی با حذف دو پارامتر گلوتن مرطوب و اندیس ابعاد ذرات آرد، دارای 5 نرون در لایۀ ورودی و 15 نرون در لایه های پنهان اول و دوم جهت پیش بینی عرض از مبدأ و دومی با 7 نرون لایه ورودی، 24 نرون در لایۀ پنهان اول و 17 نرون در لایۀ پنهان دوم جهت پیش بینی شیب مدل برازش یافته بر روبش فرکانس مورد استفاده قرار گرفت. با استفاده از شبکه های گسترش یافته، پیش بینی خصوصیات رئولوژیکی خمیر با ضریب همبستگی بیش از 97% صورت گرفت. اندیس گلوتن و عدد زلنی به عنوان مؤثرترین پارامترها بر تغییر ویژگی های رئولوژیکی خمیر شناسایی شدند. نتیجه گیری: شبکه های عصبی مصنوعی-الگوریتم ژنتیک ابزار توانمندی در پیش بینی خصوصیات رئولوژی خمیر هستند. آزمون حساسیت شبکه بهینه به خوبی اهمیت پیش بینی کنندگی ویژگی های فیزیکوشیمیایی آرد بر تغییرات خصوصیات رئولوژیکی بنیادی خمیررا نشان می دهد. واژگان کلیدی: شبکه عصبی مصنوعی، الگوریتم ژنتیک، رئولوژی خمیر، ویژگی های فیزیکوشیمیایی آرد
منابع مشابه
پیشبینی خصوصیات رئولوژیکی بنیادی خمیر با استفاده از شبکه عصبی-الگوریتم ژنتیک
سابقه و هدف: خمیر محصول میانی خطوط تولید صنایع نانوایی است که ویژگیهای رئولوژیکی آن نمایانگر خصوصیات فیزیکوشیمیایی مواد اولیه و مؤثر بر ویژگیهای کیفی فرآورده نهایی است. با توجه به کارایی بالای شبکههای عصبی مصنوعی در آموزشپذیری و پردازش موازی دادهها با روابط غیر خطی، هدف از این پژوهش تهیۀ مدلهایی مناسب به منظور پیشبینی خصوصیات رئولوژیکی خمیر با توجه به ویژگیهای فیزیکوشیمیایی آرد است. مو...
متن کاملپیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی
In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...
متن کاملپیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
متن کاملپیش بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی
خشکسالی به عنوان یکی از مهم ترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن به منظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستم های پیش بینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق...
متن کاملبهینهسازی فرایندهای عملیاتی پیش تصفیه آب صنعتی با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
متن کامل
استفاده از ترکیب الگوریتم ژنتیک و شبکه های عصبی مصنوعی برای پیش بینی نیروی گاز گرفتن از روی سیگنال الکترومایوگرام
Human mastication is a common rhythmic behavior and a complex biomechanical process which is hard to reproduce. Today, investigating the relation between electrical activity of muscles and force signals is of high importance in many applications including gait analysis, orthopedics, rehabilitation, ergonomic design, haptic technology, tele-presence surgery and human-machine interaction. Surface...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
علوم تغذیه و صنایع غذایی ایرانجلد ۱۰، شماره ۳، صفحات ۶۷-۷۷
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023